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amplitudes as the frequency increases, the amplitude of the first antisymmetric mode is 
almost an order of magnitude higher than for thefirstsymmetric vibration mode. 

Therefore, the influence of the fluid on the vibrations of a bounded plate manifests 
itself not only in a reduction in the resonance frequencies, but also in the distortion of 
the resonance plate vibration modes that exerts a substantial influence on the deflection 
amplitude and the acoustic pressure in the medium. 
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LONGITUDINAL VIB~TIONS OF ELASTIC RODS* 

m KHAN’ CHAU 

One-dimensional equations are constructed for the high-frequency 
longitudinal vibrations of elastic rods. Problems in a section are 
formulated to determine the "effective" elastic characteristics of the 
rod. In the case of a circular rod, the elastic characteristics, dispersion 
curve, and spectrum are found. Comparisons are made with analogous 
results of the three-dimensional theory of elasticity and with experiment. 

1. One dimensional theory of high-frequency longitudinal vibrations of rods. 
We consider an isotropic homogeneous straight rod of length 2L with a constant cross-section 
S that occupies a volume V in the non-deformed state in the Cartesian coordinate system 
z1,z~,x3~x (the superscript 3 is usually omitted) ~ We place the origin of the coordinate 
system at the centre of the rod and direct the x axis along its central axis. We will assume 
the cross-section to be centrally symmetric (if (x1,$)= S, then (-21, --1)E S). * 

Under given initial conditions the rod performs vibrational motion. The problem is to 
construct a one-dimensional dynamic model of the rod high-frequency vibrations that is 
asymptotically exact in the long-wave domain, and is moreover qualitatively descriptive of 
the rod integral characteristics in the short-wave domain. Taking a variational approach as 
a basis,/l, 21, we postulate that the rod motion will occur in conformity with the following 
variational principle 

where K and @are the one-dimensional kinetic and internal energy densities of the rod. 
The formulas 

Iz = l/a@, t, @ = ‘J&u~x (~-2) 

turn out to be true in the classical theory of longitudinal vibrations of a rod, where u is 
the longitudinal displacement averaged over the cross-section, E is Young's modulus, and p 
is the density of the elastic material of the rod. The model (1.11, (1.2) describes the 
low-frequency, long-wave vibrations of the rod. It is natural to assume that as the vibration 
frequency increases the internal degrees of freedom that characterise the new modes (branches) 
of the rod vibrations will become substantial and these vibrations can be described, in a 
certain frequency range, by eliminating an appropriate set of internal degrees of freedom in 
the number of arguments of the functions K and do. Within the framework of this approach it 
is most important to determine the set of essential degrees of freedom and to set up the 
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dependences of K and @on them /l, 2/. The crux of the proposed model of the longitudinal 
vibrations of a rod is 

(1.3) 

Here u is the mean longitudinal displacement,9 and v correspond to two high-frequency 
branches of the vibrations whose principal terms describe the first natural modes of the cross- 
section vibrations as a two-dimensional elastic continuum, h is the maximum distance between 
the boundary S and the centre, and TV is the shear modulus. The kinetic energy density K is 
simple in form. Unlike quadratic forms of general outline in u, $, v, u,,, q,X, v_~, the function 
0, possesses certain features; there are no terms of the type u',I#,,u, u,,v, uu,.... The model 
(l.l), (1.3) contains eight constants sir s2, sa, rr, rl. r3. p,“, pz” for whose determination problems 
in the section, formulated in Sect.2 below, must be solved. 

The rod model (l.l), (1.3) is constructed in the same way as the model of high-frequency 
shell vibrations in /3/ (see /4-6/ also) in two stages. In the first stage, branches of the 
rod vibrations in the long-wave domain are found from a three-dimensional functional by using 
a variational-asymptotic method /2/. We hence retain only the principal terms, in the 
asymptotic sense, in the long-wave domain, and neglect all terms of order h/l as compared 
with the principal terms (here 1 is the wavelength along the longitudinal 5 axis). Representing 
the rod displacement in the form of the superposition of the vibrations branches found, we 
take the average of the three-dimensional action function in the second stage and seek the most 
successful extrapolation to short waves among the asymptotically equivalent functionals. The 
latter means appending or deleting terms in the average functional that are small in the long- 
wave domain but are substantial in the short-wave domain. The following criteria underlay the 
selection of the extrapolation: a) conservation of the principal terms, in the asymptotic 
sense, of each branch and the principal cross terms between the vibrations branches under 
consideration in the average functional; b) the hyperbolicity of the averaged equations. 
These criteria enable us to select the mddel that will satisfy the mentioned requirements. 

2. Long-wave vibration branches. We will first formulate the problem of rod 
vibrations within the framework of the three-dimensional theory of elasticity. Let wi (i, P, 

5, t) denote displacements of points of the rod. To be specific, we will assume the rod side 
boundary and endfaces to be load-free. Then the true displacements of the rod are a stationary 
point of the functional 

+idvdt, A=T-lJ (2.1) 
0 

T = ‘/~pq w, ti = ‘/a~ (w, 8 t ~a, tu;, P) 
u = ‘/a [h (wpLa)* + 2hwpaw, x + (h + qq w”x + 2pq,, i?.)W(“’ 0) + 

P (w. a + LDcr. x) (W’ a + Cx,l 

Here, h, p are the Lam6 coefficients of the elastic material of the rod. The Greek 
letters correspond to projections on the fl axis and run through the values 1, 2. The comma 
in the subscripts denotes partial differentiation, and the parentheses in the subscripts 
denote the symmetrization operation. Summation is over repeated subscripts. 

We perform an asymptotic analysis of the functional (2.1) in the long-wave domain. We 
make the change of coordinates 6" = e/h. The small parameter h enters here explicitly in the 
internal energy density 

lJ=l,@ [yh-2(w)oa)2+ 2yWq,W,, + e+02, + (2.2) 
2h-2wca,Bgv(=1fi) $- (k’w,, + wa, x) (h-W‘ + w”x)], y = k/p 

e = VP/& + 2~) 

and the action functional (2.1) becomes 

where Q is the domain of variation (tl,c*) independent of h, and the vertical bar in the 
subscripts denotes partial differentiation with respect to p. 

We will assume h< I, where 1 is the characteristic scale of variation of the state of 
stress along the longitudinal coordinate z (the "wavelength") /2/. Keeping the asymptotically 
principal terms in the functional (2.3), we obtain 



I=h’ fS i 7iasat 
t. -L 

ii = ‘I* (p (w. ta + w,, tw, t”) - P (Yh-a ha=Y + 
2k%v(,,~~W(~l~) + h-*wlaw’a)) 

The extrema of the functional (2,4) agree with the extrema of the functional 

These are linear superpositions of 
into two series, namely 

Series 

Series 
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~2.4) 

the eigenmodes (branches) of the vibrations that are split 

FL,,: w= q&I) (WV W,GO (2.5) 

TFLI: WCS = 9(“)fcz(“) (5% w = 0 

The eigenfrequencies and eigenfunctions in each branch can be found by solving the 
following eigenvalue problem: 

FL,,: - Aft”) = S;, cn,fe,, f(n)lav a=0 on dp 

TFL,: - (Y + l)&eo: - A&) = Bhfcrcn, 

Yfh3 + 2fww)v6 = 0 on xl; p=cbh/c*, c,=jq$l 

12.6) 

Here his the Laplace operator, Va are the components of the normal vector external to 
the contour &Z. The following normalization conditions can be imposed on the eigenfunctions 

fw and facn : 

<f&9 = 1, <facn,f%> = 1 

Among the eigenbranches of the vibrations we especially extract the branches comprising 
the "kernel" of the operators (2.6) (the eigenfrequencies equal zero). They correspond to 
the classical low-frequency branches of the vibrations and have been studied in detail. We 
call the remaining branches the high-frequency branches of the vibrations a--+ 00 as It-O. 
We formulate problem (2.6) for these vibrations branches in variational terms 

FLll: <flcJf'=)=Bll*<fsf>; <P>=1, <f>=O (2.7) 

TFL, : <Yfl~~sflc&" + 2f@,p)6f’“‘Q = B LZ <f&9 (2.8) 

<fcP> = 1, <fa> = 0, <e”fifc&.> = 0 

where 69 are the two-dimensional Levi-Civitl symbols. Here and henceforth the number of the 
branch is omitted on the function. 

The following corrections can be found for each branch individually /6/. We will formulate 
the results in variational terms 

FL ,, : ZfJ = vf (P), wa = hv, rga (59 (2.9) 

tygl8~sgla” + &?,l&?(a'fi) + yfSg,c? - fl&m = B II a <&c&?? (2.10) 

TFL,: wa = $fa (P), w = h$, rg (59 (2.11) 

<g&P + fc8gla - yf bag> = PI” <gbg> (2.12) 

3. Avarage Lagrangian of an individual high-frequency vibrations branch. 
Before turning to the second stage of constructing the equations of the rod vibrations, it 
is first convenient to find the principal terms of each branch in the long-wave domain in the 
average action functional. We will examine one branch in the series FL,,. Let v be an 
arbitrary function of z and t in (2.9). Substituting (2.9) into the functional (2.3) retaining 
the principal terms, and taking the average over the section, we obtain 

<A) F '/ep (v, ta + h%:rt <g&>) - ‘/a~ [h+ <f’=fd + 

vax (<y (gl,=)p + 2g@z,e,g@‘~) + 2YfgiP - 2gafd + e-Y1 

According to the variational Eqs.(2.7) and (2.10), we have 

<fluf’=> = B II 2 

<Y (&?lc&")~ + 2&zltI,P'~~ + YfM - flag? = B N”<hP) =cslla 

Therefore 
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Since 11 describes harmonic vibrations in the long-wave domain with a frequency near the 
frequency 011 = &C,/h, the term "/,pch& in (3.1) can be replaced to a first approximation 
by ‘/,pC@~~2U,xa- Finally, the principal terms of the branch FL11 in the average Lagrangian are 
the following: 

(A> = lhpv, t2 - l/q (B ,,%2u2 + (ka -t- e-“) $2, 

We have analogously for the branch TFL, 

(A) = ‘/np*, t2 - ‘,&CL (B,Zh-V” f (kz -t 1) @xi 

ka = <f&‘a - WfirL”> 

(3.2) 

(3.3) 

(fcx and g are solutions of the variational problems (2.8) and (2.12)). 

4. Equations of the rod high-frequency longitudinal vibrations. we shall 
construct equations describing a family of the first three longitudinal vibration branches. 
Such a family was selected because of the simplicity of the final formulas. Models including 
a'larger number of interacting vibration branches can be constructed with the same success. 

Thus, we represent the rod displacementsinthe form 

w==iid+5f+h$,,g, w, = Vf, + h? .e, -t- hv”, .,g, (4.1) 

where the desired ii,%,5 are arbitrary functions of x, t (the notation without bars is reserved 
forthefunctions that appear in the final equations as a result of replacing the desired 
functions>. The function rZ belongs to the classical longitudinal branch of the vibrations 
and describesthemean longitudinal displacement of the rod (in the long-wave domain). The 
functions $ and V correspond to the first high-frequency longitudinal branches of the vibrations 
in the series Z’FL, and FLll* The basis functions f and fa are orthonormal eigenfunctions 

in problems (2.7) and (2.81, and the functions ga and g are determined in terms of f and ja 
in the solution of problems (2.10) and (2.12). It can be shown from an asymptotic analysis 
of the functional (2.3) that d = (mesa)-v* = con& while e a is a linear function in F, whichis 
a solution ofthevariational problem 

<ye,,%ie,# + 2ec,(&9a1~) + yd&p> =O; (e,)= 0, (e"Be&i>=O (4.2) 
This equation has the obvious solution (v is Poisson's ratio) 

e, = --G?v<~ (4.3) 
We substitute (4.1) into the functional (2.3) and we integrate over the domain 8. Keeping 

the principal terms of each branch and the principal cross terms in the average Lagrangian, 
and taking account of the results in Sect.3, we obtain 

<A) L=I ",&p(ii, *a + 2b&u, iv, xt + $i. tZ -t- 2bsh% t$ xt -t 

2b_&q, $E. xt $ s, ta + Zb&, &, xi) - ‘14~ [Bi”h-“q f 
(4.4) 

2alh-1i@, x + 2a&-qz, c 4. ZrdAi, ,q -I- 2r&-1@‘, I + 
Zr*h-‘sji, x + &%-w + Zash-‘F$, I + 
k&, +- (ka + 1) $x + (ks + e-“f ?:“xl 

Here fir', &' are the first eigennumbers BAaand. /%,I* in problems (2.8) and (2.7); the 
formulas for the remaining coefficients have the form 

br = <dg), ba = <faea>, bs = <f&Q, bh= <fg> 
al = <vf~d%3~ + 2f~~~6~e(~W~ aa = <Yfd%d + 2f~amP189 
aa = (flag@. rl= Y Gtaad>, ra = Y <flaaf> 
rs = <flafa>, kr = E/P = 2 (if v) 

The coefficients kg, k, are given by the formulas in (3.1) and (3.3). 
The following equalities can be, proved 

14.5) 

b, = b,, b, = b,, a, = b,/3,P, a, = b,pla, a, = b&” 
rl = -b,@,a = -a,, rs - rs = b, (&’ - BP%) = a, - a, 

(4.6) 

by using the variational Eqs.(2.7), (2.81, (2.10), (2.121, (4.2). 
It follows from relations (4.6) that all the principal cross terms in the average 

Lagrangian (4.4) form divergent terms in sum, without affecting the equations for C,3;,6. 
Conseqeuntly, a method of short-wave extrapolation is possible in which all the cross terms 
in (4.4) are discarded, which would result in independence of the vibration branches. However, 
additional analysis shows that such extrapolation will result in a qualitatively false 
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description of the dispersion curves and integral characteristics of the rod in the short- 
wave domain. Consequently, we will here keep all the cross terms and shall only try to seek 
the replacement of the desired functions, that would simplify (4.4), i.e., would reduce (4.4) 
to an expression without higher-order derivatives than the first with respect to z and t. 

Using properties (4.6), we form complete squares in (4.4) 

W ==='/sP &,r + wF,,)a -+ (V. t + bahrZ,r: + MF,.t)* + 
(F, t + bshf#, xt)* - (bn* + bag) h*ij;xt - bzah”iiq:xf - b,zhaE:rt] - 

‘/a~ [B1sh-a fi + b&Lc. r -I- b&C, Jo + 2rlh-‘@, x + 
2rSh-q5, X + 2rah-1Uij, r f fip3h-? (5 + b%hv, J2 f 

&1- * b2*fW E2, + (k2 i- * - MB22)~lr + 

(kl -t_ e-? - b&4) Ff S 1 
The terms in the kinetic energy -rizp (bSZ + baa)hvrrt and -l/,pb,ah%jf,l at long-waves can 

be replaced by --'/# (bSa -+ b,a)fil~,X2 and -11zpb,af3,%~x (as was done in Sect.3). The term 
--Illpb,8hazif,~ is small at long waves and can be omitted. The Lagrangian then has the form 

Formula (4.7) shows the substitution ii -+u, q-q, 8---t V, where 

u = ii + b,hq,,, Jt=f -+ b,hii,. + b&G,r, u = 5 + b&$.x (‘w 

Keeping the principal terms of u,$,v and the principal cross terms in (4.7), we obtain 
that (A)= K - @, where K and @have the form (1.3) while the coefficients sl, s,, sQ are 
calculated from the formulas 

sl=kl+“8 
BP ’ 

~~&++$+_~ 
02” - $2 (4.9) 

sacks+ ~-L~ 

The variational principle takes the form (1.1) apart from the unimportant constant ha 
By varying the functional (l.l), we obtain the equations of the high-frequency longitudinal 
rod vibrations and the boundary conditions of the free edge 

5. Calculation of the coefficients of the high-frequency longitudinal 
vibrations equations in the case of a circular rod .To completethe construction of the 
model it is necessary to find the coefficients &&,T~,~~,Q,+,J~ of Eqs.(4.10) (thecoefficient 
8, is found if r1 and &are known). Finding these coefficients reduces to solving the section 
problems formulated in Sect.2. As a rule, these can be solved only by numerical methods. 
One of the exceptions is a rod of circular cross-section where the coefficients are found 
explicitly. In this case the problem Eqs.(2.7), (2.8), (2.10), (2.12) are solved in a (r* P) 
polar coordinate system, where r= f/, g,= arg(cl,%). For the longitudinal branches of the 
vibrations obviously f,zg,O while f, fr,g, g, depend only on r (axial symmetry). Therefore, 
problems (2.3, (2.8), (2.10)‘ (2.12) reduce to boundary value problems for ordinary Bessel 
differential equations and are solved explicitly in terms of Bessel functions. 

Let us present the results. The numbers t3,. fiI are the least roots of the following 
transcendental equations 

+Jo(eB1) = 2@Jl(&), J&*) = 0 =i Bt = 3.83i71 (5.9 

where J,(z),J1(x) are Bessel functions of the first kind. The remaining coefficients are given 
by the formulas 2YBl r,=--, %@t%* VP% 

X r* = @pZ- p+)X ’ Q = - (&a - p*v,r, (5.2) 
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The coefficients sl,sp,sJ are evaluated using (4.9). We present below the values of 
8. r,, '2. rs, s*, sg as a function of v 

v 
Bl i,604 2% %5 3% ii:&* 02* %7 x2 

-r1 ! O;%SZ a:584 0:99 1,52 2:247 $314 5:057 
ra 0,083 0,197 0,355 0,583 0,926 1,474 2,448 

--rs 3,097 3,109 3,123 3,138 3,154 3,172 3,192 3,214 
Sl 2 2,109 2,241 2,404 2,613 2,893 3,294 3,934 
S$ 0,625 0,624 0,622 0,617 U&I8 0,591 0,557 0,475 
sg 1,885 1,954 2,U3? 2,125 2,288 2,382 2,578 2,874 

To restore the rod displacements in the values of u,$, v it is necessary to know the 
basis functions f, fp We present their expressions 

-5 0 5 10 

Fig.1 Fig.2 Fig,3 

6. Dispersion curves and frequency characteristics of a circular rod. 
Dispersion curves axe shown in Fig.1 for the set of Eqs.(4.10) examined in the domain --M< 
s<+m for ~=0.3317 (the solid lines). Here x= kh is the dimensionless wave number, 
@= ohiC, is the dimensionless vibration frequency. Its projections on the real and complex 
planes @, Re X) and (6, Imx) are drown forthe complex branch. We also draw no comparison 
the first three branches of the dispersion curves calculated by three-dimensional elasticity 
theory /71 (the dashed curves). They are solutions of the dispersion equation /8, 9/ 

2p (q% f x2)J,(p)Jz (q) - (q” - xy)“lg (N, (q) - ~~*~q~~(P)~o(q) = 0 (63) 

where p = J&P - x*, 6 = fiP- xl. By using Newton's method it can be proved that the following 
asymptotic formulas for the first three vibration branches result from (6.1) for Jx[<l (to 
x4 accuracy) : 

‘62 = 2 (1 + v) 9, da = PI” + (ks + 1) x2, t+ = Q + (k, $ e-“) x2 (6.2) 

where 81,8I, k,,k, are given by (5.1) and (5.2). It can be proved that (6.2) also result from 
the dispersion relationship for (4.10). Therefore, (4.10) describes the behaviour of the 
dispersion curves in the long-wave domain with asymptotic accuracy. As is seen from Fig.2, 
qalitatively good agreement with three-dimensional theory is observed in the short-wave domain. 

The presence of a complex branch for the dispersion equation of model (4.10) and the 
interaction of waves with different wave numbers enable us to describe new effects not present 
in the classical theory of rods. One is the existence of edge modes in a semi-infinite rod. 
The dependence of the edge mode frequency on Y is shown in Fig.2. For Y = 0.29 we have 
6=2.83. For comparison, we present the experimental value of the edge mode frequency i?,=2.92 
(the open circle) (/lo/, Table 2). By three-dimensional elasticity theory &=2.921 (the 
corsses) (/ll/, pp.209-210, Fig.86). Experiments and theoretical computations were performed 
in /lo, ll/ for a finite rod: v=O.29, 2h=O.g85 cm, 2L=8.885 cm. By the one-dimensional 
Mindlin-McNiven theory, S,=2.59 (the triangle) /12, 13/. 

The spectrum for a finite rod is given in Fig.3 for v=O.29. The first four eigen- 
frequencies are shown for the even modes of longitudinal rod vibrations as a function of L/h 

(the solid lines). The dashed lines denote curves computed by the classical theory of 
longitudinal rod vibrations. For Sg2 fairly strong divergence between the classical and 
constructed theories is observed. Unfortunately, the few experimental data /14/ (the open 
circles in Fig.31 are insufficient for comparison. 

The author is grateful to V.L. Berdichevskii for discussing the research and for valuable 
remarks. 
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ELASTIC WAVES IN A MATERIAL WITH CHEMOMECHANICAL REACTIONS* 

B.N. KLOCHKOV 

A theoretical analysis is given of mechanical wave processes in muscle 
tissue over a broad frequency range. As in /l/, the elastic waves are 
studied using a continual chemomechanical model /2-S/ extended to the 
case of an arbitrary discrete and continuous relaxation time spectrum /6/. 
Analytic expressions containing elastic and viscous parameters, as well 
as parameters corresponding to the muscle anisotropy and activity, are 
obtained for the elastic wave velocity and damping in thin muscle tissue 
specimens. The muscle specimen stability conditions are found. A 
comparison is made with known experimental results and it is shown that 
the model constructed describes the elastic-wave characteristics 
satisfactorily in a muscle in different states. 

Investigation of elastic-waves in a medium is an important (often 
unique) method of determining its structure and rheological and functional 
properties. This especially concerns media of a biological nature, 
particularly muscle and internal organ tissues. As a rule, biological 
media are anisotropic and heterogeneous, where the muscle tissue still 
manifest active properties, and develops a stress as a result of chemical 
reactions. During miscle contraction (single, say) the elastic-wave 
velocity and damping depend on the muscle stress and degree of contraction. 
Depending on the wavelength, the excitation method, and the propagation 
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